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It is shown that a consideration of the magnetic field in a highly conducting turbulent 
medium, using Lagrange variables, involves deriving kinetic equations of fluid-particle 
transition probability densities. A derivation of such equations is performed for joint 
probability densities of n particles up to n = 4. By assuming normality of one particle 
distribution function it was found that these kinetic equations are the generalized 
Kolmogorov-Fokker-Planck (KFP) equations. The dynamics of mean and fluctua- 
ting magnetic fields is described by means of these equations. The eddy diffusivity of a 
mean field for processes described by generalized KFP equations coincides with that 
of a scalar field (depending in general on helicity in implicit form). It is shown that 
at sufficiently large magnetic Reynolds number, a turbulence with any spectrum 
generates fluctuating magnetic fields. 

1. Introduction 
Kinetic equations are widely used to describe dynamic systems with fluctuating 

parameters. In this paper such equations will be employed in order to clarify some 
properties of the magnetic field in a highly conducting turbulent fluid. 

There are well-known kinetic equations, governing the random Markov processes 
with no probability consequences and these are the Kolmogorov-Fokkel-Planck 
(KFP) equations of the diffusion type. As regards turbulence, the Markov-type of 
process implies a statistical independence of motions of the medium a t  different, 
though close, moments of time. This is equivalent to assuming a &correlation in time 
of the velocity of random motions. Physically this implies the use of a small 
parameter, m / Z  4 1 ( ~ ,  u and 1 are the correlation time, the characteristic velocity and 
the scale of energy -containing eddies respectively). For real turbulence, typically 
T x llu, and the above-indicated small parameter is absent. Therefore, for describing 
the dynamics of magnetic fields in turbulent media it is desirable to employ kinetic 
equations that are valid for random non-Markovian processes. 

Derivation of such equations is of wider interest than the application to magnetic 
fields. A number of authors (Bartlett 1955; Roberts 1961; Kraichnan 1966; Pawula 
1967 ; Rytov 1976), on examining non-Markovian processes, have concluded that 
continuous processes, such as these obey second-order differential equations that 
coincide in structure with KFP equations but have, generally, other coefficients. Such 
equations are referred to as generalized KFP equations, and have been treated most 
thoroughly by Pawula (1967). 

The KFP equations contain sufficient information for describing the dynamics of 
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magnetic fields. The problem of the magnetic field in a turbulent fluid at large 
magnetic Reynolds numbers is of particular interest in numerous astrophysical 
applications. For a medium of low conductivity, the amplitudes of magnetic-field 
fluctuations are small and perturbation theory is invoked to  treat the mean fields 
(Steenbeck, Krause & Radler 1966; Steenbeck & Krause 1966; Moffatt 1978; Krause 
& Riidler 1980). For high conductivity this is not the case but i t  is possible to 
overcome the difficulties that  arise by using a model of random motion that is 
&correlated in time (the Markov process). 

For large-scale fields (LSF) the use of such a model (Vainshtein 1972), by itself, 
appears not to limit the validity range of the results obtained. The form of an equation 
for the mean field 

aB --v X ( I / X  B) = -v X (& v X B) + v X a B  
at 

can be determined from dimensionality considerations. The problem is merely that 
of accurately calculating the coefficients D, and a. However, for an LSF dynamo to 
occur, an accurate evaluation of these quantities is not decisive. For any D, and a ,  
fields of a sufficiently large scale L, satisfying the inequality L 9 D,/a, will be 
generated by a turbulent fluid. The only problem concerns the sign of the magnetic- 
field eddy diffusivity, whose solution requires an accurate theory. As we will see 
in $4, D, is positive and coincides with the eddy diffusivity of a scalar field. 

A quite different situation is typical of the fields of scales l ‘ ,  I‘ 5 1, which will 
henceforth be referred to as small-scale fields (SSF). Hence, the Markovian model 
(Kazantsev 1967), though allowing us to clarify certain regularities, does not provide 
any solution to the problem. At large magnetic Reynolds numbers and not too small 
scales I’ (i.e. large compared with the dissipative scale I , ,  for which the ‘local’ 
magnetic Reynolds number is of order unity), microscopic magnetic diffusion is not 
significant. The dynamics of fields of such scales is determined by two competing 
processes : field amplification by turbulent motions as a result of an extension of the 
lines of force; and magnetic-energy transfer across the spectrum into the region of 
small scales (eddy magnetic diffusion). The rates of these processes are order- 
of-magnitude coincident. Therefore, simple estimations do not provide any solution 
to  the problem of SSF dynamo. An accurate theory is necessary, capable of treating 
real turbulence (T * l /u),  as was outlined by Kraichnan & Nagarajan (1967). 

The possibility of constructing an accurate theory is opened up by the Lagrange 
approach, widely used at present (Moffatt 1974; Kraichnan 1976a, b ,  1979; Moffatt 
1978, 1983; Vainshtein 1982). In  the next section we will describe a version of the 
Lagrange approach that, when applied to magnetic fields, employs kinetic equations 
for the probability densities of fluid-particle transitions. Within the framework of 
such an approach we will show in $ 5  that the SSF dynamics is dominated by the field 
amplification and an SSF dynamo takes place. 

2. Lagrangian description of the magnetic-field dynamics 

v ,  satisfies the induction equation 
A magnetic field H in a highly conducting medium, that moves with a velocity 

= v x ( v x H ) .  at 



The mgnetic $eld in a highly conducting turbulent medium 75 

An exact solution in Lagrangian coordinates is known to be 

Here x(a,  t )  is the position at time t of a particle, which started a t  a at t = 0, and 
p is fluid density. 

In  the kinematic formulation of the problem, to which we will confine our 
consideration, it is necessary to describe the evolution of magnetic-field statistical 
characteristics by assuming the motion to be specified. The method of specifying is 
not significant, but can be, for example, as Lagrangian trajectories x(a ,  t ) .  Here, the 
kinetic equation (9) (see below) will be used. 

The involvement of the density p in (2) creates additional difficulties. Methodolo- 
gically, it is convenient to change from the Lagrangian variables a and t in ( 2 )  to the 
Euler variables x and t .  In  this case, the initial position a(x ,  t )  of a fluid particle will 
be regarded as a function of the Euler variables: 

Here ctpf is the antisymmetric tensor and the density of the medium no longer 
appears. Further simplifications are achieved by introducing a vector potential : 

We shall be interested in the field characteristics that are averaged over an 
ensemble of random motions. Averaging becomes relatively simple if we omit from (4) 
the dependence of the vector potential on the random argument a(x,  t )  by introducing 
convolutions with the &function: 

,. 

We assume the limit procedure in (5 )  to exist. This assumption seems natural as ( 5 )  
is in fact a modified (4). On averaging (5 ) ,  we obtain the following formula for a 
large-scale vector potential : 

r 

(A, (x ,  t ) )  = lim lat dzd lzp,(x, ' x  I z, lz, t )  (A,@, 0)) 'zj. (6) 
1x+x J 

In (6) we have assumed the statistical independence of the initial field of random 
motions. This means that (6) is to be considered asymptotically, at  t 9 7 .  The 
quantity p ,  appearing in (6), represents a two-particle-transition probability density, 
i.e. the density of the probability that at  the initial time t = 0 the particles were at 
positions z and ' z  provided that a t  the present moment t they are a t  x and ' x  
respectively, 

Thus, the problem of magnetic-field dynamics is now that of determining the 
statistical properties of fluid particles in a turbulent flow. 

Formally, it is possible to state that the relation (6), by itself, is already a solution 
to the problem. Since thep, function depends only on the properties of the turbulence 

p&, lx I z ,  lz ,  t )  = (6[z - - (x ,  t ) ]  8[1z-a(1x, t ) ] ) .  



76 8. I .  Vaimhtein and L. L. Kichatinov 

and is independent of the magnetic field, information about the motion of the medium 
can be specified by choosing some particular function p,. Such a method was used 
by Vainshtein (1981) but it is rather complicated. First, it is rather difficult to specify 
p ,  such as to satisfy all the properties of a joint density of the transition probability 
of two fluid particles (going to zero when z = ' z  and x =+ 'x, a symmetry about the 
transformation z e* 'z ,  x * 'x, etc.). Secondly, when a particular function p ,  is 
specified, a specific model of a turbulent flow is considered but this entails loss of the 
possibility of describing the field dynamics in a general form. Also, to describe SSF 
dynamics requires a four-point function p, that is still more difficult to specify than 
p,. Equation (6) affords only a formal solution to the problem. An equation for p, 
will be derived below and the SSF dynamics will be defined using this equation. 

Let us consider a small-scale magnetic field h. Averaging separates the large-scale 
from the small-scale components of the fields: 

( u )  = v, u = v+u, 

(H> = B, H =  B+h,  

( A )  = A,, A = A,+A,.  

In order to describe the field h we will employ the correlation tensor 

B$,('X, ex, t )  = ( h i ( ' X ,  t )  h#X, t ) ) .  (7) 

Let us multiply A,('x, t )  by A,(2~, t ) ,  express, with the aid of (5 ) ,  the product in terms 
of the initial field and average the result. We thus obtain 

1 9  x+ x 

Generally, the mean fields contribute to this expression. The contribution is readily 
excluded with the aid of (6). 

To describe the fluctuation fields requires a four-point function of fluid-particle 
distribution, p, : 

) 
4 

p 4 p  I'z, t )  = n 8[Pz--(% t ) ]  . L1 
Knowledge of the kinetic equations for p ,  and p ,  makes it possible to define the 
dynamics of the mean and fluctuation magnetic fields. 

3. The kinetic equations for fluid particles 
The purpose of this section is to substantiate the generalized KFP equations for 

Pn 

(9) -+ aP, v , (a~)a i ) ,p ,  = ql(=x,~~)aai*a,pn. 
at 

The Greek indices here run as follows; 1,2,  . . . , n. A repetition of these indices means 
summation. This equation for a two-point distribution function was proposed by 
Roberts (1961) and Kraichnan (1966). It is worth remembering that p, represents 
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the probability densities with respect to the initial coordinates of particles. The 
normalization conditions have the form 

J P A X  I u, t )  da = 1, 

Jp, ( lx ,  llu, t )  d2a  = p,(’x 1% t ) ,  

and so on and thus the differentiation operators on the right-hand side of (9) stand 
to the right of the coefficients q,. 

When the motion of fluid particles represents a random Markovian process 
(7 4 Z/u), (9) is the KFP equation (Kolmogorov 1931). Also, 

q,(r)  = s,” (ui(x,t)u,(x-r,t-S))dt?. 

For real turbulence (7 - l/u) (9), as we will see, remains valid but (lo), generally, 
becomes invalid. 

The most straightforward investigation of generalized KFP equations was made 
by Pawula (1967). In his paper, the following main statements were proved. 

(i) The kinetic equations can be expressed containing time derivatives not higher 
than first order: 

aP - at = Lp,  

where is an operator which involves neither time derivatives nor time integrals. 
A justification for this statement is given in Appendix A. 

(ii) There are only two possibilities for fi if p in (11) is p , :  f, may be a differential 
operator not higher than second order or an integral operator (a differential operator 
of infinite order). 

(iii) If the kinetic equation for a one-point distribution function is a second-order 
differential equation, then the kinetic equations forp,, pa, p4 ,  . . . are also second-order 
differential equations. 

We assume the distribution function p ,  to be normal. Let us consider this 
assumption in more detail for it is important to the theory developed below. It has 
not yet been rigorously proved, but seems physically realistic. In fact, p ,  is the 
distribution function of one-particle displacements. In  an asymptotic regime i.e. at 
t p T particle displacement may be represented as the sum of a large number of 
independent displacements, and the distribution tends to a normal one according to 
law of large number. 

This leads to the following kinetic equation : 

According to (iii) above, the kinetic equation for p, ,  has to be of a generalized KFP 
type (9). Vector V, corresponds to  mean velocity and coefficients q, possess 
correlation tensor properties (see Pawula 1967). 

According to (ii) and (iii), there is, in principle, the other possibility that p ,  satisfies 
an integral kinetic equation. It may be expected that the equation describes a 
discontinuous stochastic process. It is this situation that corresponds to Markovian 
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processes : continuous random processes are governed by K F P  equations and 
discontinuous ones by integral equations (Rytov 1976). 

Some points outlined in support of these being generalized KFP equations that 
apply to real turbulence are outlined in Appendix B. This may be considered as (not 
rigorous) justification of the assumption that a one-point distribution function is 
normal. 

Note finally that assuming the statistics of the turbulence to be a one-particle 
distribution is probably no less generally valid than previous assumptions. I n  
particular, Kraichnan (1976) assumed a normal distribution of Fourier amplitudes 
of Eulerian velocities. 

The substantiation of (9) does not lead to an explicit form of the expression for 
the tensor T i j .  It has only been established that this tensor has correlation properties. 
But even this, together with (9), allows us to draw important conclusions about the 
properties of magnetic fields. Also, the tensor Tii can, in principle, be determined 
experimentally by measuring the correlation characteristics of displacements of two 
fluid particles in a turbulent flow. 

4. The mean field dynamics 
,4n averaged solution of the induction equation (6) together with the kinetic 

equation forp, (9) define the dynamics of large-scale magnetic fields. On differentiating 
(6) with respect to time, taking into account (9) and using the relation 

lim ( 'ai + a,)! = a, limf (13) 
' X + X  'X+X 

we obtain an equation for the vector potential (Kichatinov 1985) 

The coefficients of turbulent diffusion of the magnetic field D, and generation a are 
expressed in terms of the tensor q,: 

D, = &(O) ,  a = 2C(O) (15) 

It is taken into account here that in the present case of isotropic turbulence the tensor 
!& has the following structure (Monin & Yaglom 1975): 

Applying the operator V x to (14) we find an equation for the mean magnetic field : 

V x ( V X  B) = DTV2.B+V x aB. (17)  

The left-hand side of (17)  involves the term V x ( V x B) which obviously arises in the 
presence of a large-scale velocity. The first term on the right-hand side describes the 
eddy diffusion of the magnetic field while the second one, the generation (the so called 
a-effect (Steenbeck et al. 1966)). 

,4s mentioned in the previous section, the tensor Tij possesses correlation properties. 
For this reason the eddy diffusivity D ,  of a large-scale magnetic field is positive. This 
statement follows directly from (15). Note that D, of (15) coincides with the diffusion 
coefficient of the entropy field (see Appendix A).  Parker (1971) has advanced an 

aB 
at 
-- 
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explanation for such a coincidence. In the case of the Markovian process (7 -4 Z/u) this 
was proved rigorously (Vainshtein 1972). It is evident that the coefficient D, (15) does 
not include any helicity contribution in explicit form (it may depend on helicity 
implicitly: the present theory does not predict an evident form of the correlation 
tensor qj). 

The kinetic equations (9) should be regarded as accurate (though with unknown 
coefficients). Precisely in the same sense, the formula for DT (15) is accurate, although 
our only knowledge of the tensor qr is that it possesses properties of a correlation 
one. This allows us to look somewhat differently at other representations of D,. 
According to Appendix A, perturbation theory results in an approximate equation 
of the type (A6), which contains time integrals. This equation is hardly comparable 
with (17).  First, (A6) includes space derivatives of higher than second order. Moreover, 
the coefficient DT is expressed as an infinite series in powers of m/1. In the zeroth-order 
approximation (7u/Z+O) DT does not depend on helicity but does so in explicit form 
in the first approximation. But we do not know the whole sum of the series 
representing DT. Let us consider another approach to the problem. H j ( a ,  0) in (2) (in 
the case of incompressible fluid) can be expressed as 

resulting in the following expressions for a and DT : 

(Moffatt 1974; Kraichnan 19763). When representing a and DT by (15), we consider 
essentially the asymptotic regime t 9 7 ,  so that these coefficients are time independent. 
This presents obstacles to direct comparison of expressions (15) and (19). If a --f const 
at t 9 7 ,  then y - t and &Idy2/dt - t ,  so that the second term in (19) for DT involves 
a time dependence. This corresponds to a divergence of DT a t  t+ 00, as suggested 
by Moffatt (1974). In  fact, the divergence results from expansion (18) and suggests 
an equation for B of the type (A6), containing a time dependence in explicit form. 

The coefficients a and D,  for moderate time t < 47 have been obtained from 
computer simulations by Kraichnan (1976a, b ) .  Asymptotic results for a and DT from 
(15) obtained for t 9 7 are apparently not compared with these simulations. 

5. The small-scale-field dynamics 
The problem of SSF dynamics in a turbulent conducting fluid was formulated by 

Batchelor (1950). In order to describe an SSF we need to seek an equation for the 
magnetic-field correlation tensor Bgi and so we shall use (8). We shall have to use 
the equation for a joint transition probability four-point density (9) (n = 4) .  On 
differentiating (8) with respect to time and using (9) we obtain an equation for the 
correlation tensor of a vector potential A,, and then, with the aid of the formula 

B f j ( ' X ,  ' X ,  t )  = €i lm Ejkn 'a, ' a k  Amn('X, 'X, t )  

determine an equation for the tensor B,. In  this case it is also necessary to  use (14) 
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in order to exclude the contribution of large-scale fields. The final result, omitting 
cumbersome intermediate calculations, is 

' R t p f  = %kl ' l p f  

Before proceeding with further transformations we shall discuss the role played by 
the microscopic magnetic viscosity in the SSF dynamics. For the case of large 
magnetic Reynolds number, R, = ( (u2)t l /0 ,  (Do is the coefficient of microscopic 
magnetic diffusivity), this diffusivity is unimportant. Let us examine this in greater 
detail. It is known that the turbulence represents a multi-scale phenomenon: i t  
involves eddies, from the largest with a characteristic scale 1, to the smallest having 
a scale of viscous damping 1,. The corresponding Reynolds number for the length Zx 
is of order unity: u 2,/x - (x is viscosity). For larger scales R > 1.  For the 
magnetic field, there also exists a region of scales in which R, B 1,  i.e. the frozen-in 
condition is fulfilled. If R, B R, then the field is frozen in all eddies, down to the 
smallest of a size 1,. If, however, R ,  < R, then the Ohmic dissipation becomes 
important, starting from a certain scale Z,,(l,, > Z,), for which uD ZD/O, - 1. For an 
arbitrary relation between R, and R, the characteristic-field scale is no less than 

max {ZD, 1,) = 1,. 

For large R, and R, which is of interest here, there is a range of scales l', 1, < 1' 5 1,  
in which the field is a frozen-in one. We shall confine our attention solely to such 
fields. In  this sense only the microscopic magnetic diffusion is not essential for the 
SSF dynamics. 

In the range of scales 1' (the analogue of an inertial range of hydrodynamic 
turbulence, for which dissipative effects also play no role) the dynamics of magnetic 
fields is defined by two competing processes, as mentioned in $1 .  As will be shown 
below, the effect of field generation does indeed predominate. Although the microscopic 
magnetic diffusion plays no role, we will later take into account the finite conductivity 
of the medium because this is of interest methodologically within the framework of 
the Lagrangian approach. The finite conductivity is taken into account by introducing 
a non-helical microturbulence with an external scale I, ,  I ,  + 1,. With regard to such 
a microturbulence, the SSFs are considered to be large-scale and therefore, because 
there is no helicity present, only eddy magnetic diffusion will be effective. In other 
words, the turbulent medium considered, with a finite conductivity, is replaced with 
another in which conductivity is infinite, but in addition to the turbulence under 
consideration there is also microturbulence present. For SSFs both these media are 
equivalent. In accordance with (15), let us assume that for the microturbulence 
T,,(O) = 30,. So, the finite conductivity will be taken into account if the tensor q j ( r )  
involved in (21) is replaced with TJr)  : 
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The structure of (21) is rather complex and in order to analyse its physical content 
we need to make a number of simplifying assumptions and perform additional 
transformations. We shall assume the large-scale components of the magnetic field 
to be zero. In this case, only the last term on the right-hand side of (21) is retained. 
We shall further'assume that the initial distribution of the magnetic field is 
homogeneous and isotropic. Since the turbulence under consideration also possesses 
this property, a homogeneity and isotropy of magnetic fluctuations will occur at 
subsequent moments of time and the tensor B, takes the form 

2BLL(r), r = r l - r2 .  (24)  BNN(r)  = - - r  
l a  

2r ar 

Here the SSF is taken to be solenoidal, and, therefore, the longitudinal BLL and 
transverse B,, correlation functions are related by (24). 

Let us write (21) taking into account (22) and the assumptions made previously: 

Multiplying (25) by r i r j / r2  and by c f r f ,  taking into account the relations written 
above and the obvious equalities 

B ,  = BLL(79, B ,  ~tj f fr f  = 2r2&r), 

we obtain a system of two equations (Kichatinov 1985) : 

2 a aBLL - aBLL - - -- 7 4 ~ - + & B ~ ~ + 4 a 8 ;  
at r4ar ar 

aB l a  a 
at 74 ar ar 
- = --r4-(2KB-aBLL). 

Here we have used the notation 

The system (26), (27) generalizes the Kraichnan & Nagarajan (1967) equation that 
is valid for the case V*u = 0 on the one hand, and the equation for magnetic 
fluctuations for an acoustic turbulence (V x u = 0) (Vainshtein 1970), on the other. 
In addition, this system includes helicity effects. We may further state that when 
a = 0, (26), for an incompressible medium, is a generalization of the Kazantsev (1976) 
equation, derived for the Markovian model, for the case of real non-Markovian 
turbulence, just as (9) is a generalization of the KFP equations. 

We shall now analyse the system (26), (27). The first term on the right-hand side 
represents turbulent, as well as Ohmic, dissipation. For real turbulence the quantity 
KT(r) in (28) decreases with decreasing r .  Physically this is because the turbulent 
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viscosity KT(r) includes eddies, of scale less than r .  The smaller r is, the fewer such 
eddies remain and the viscosity, accordingly, diminishes. Over the scales r % I , ,  the 
Ohmic dissipation is negligible (Do 4 K ~ )  and the frozen-in condition is satisfied. 
Therefore, a decrease of the SSF energy through the first term on the right-hand side 
of (26) occurs only in this scale, the energy is transferred into smaller fluctuations 
and the total energy is conserved. This is one of the two competing processes mentioned 
above. The second process of field amplification is described by the second term on 
the right-hand side of (26). This can be confirmed by writing (26) in the limit r + O :  

At the initial moment of time, the correlation length of the magnetic fluctuations is 
of order I ,  and the Ohmic term involved in (29) is negligible and hence the original 
energy grows exponentially. The field scale subsequently decreases, however, which 
makes the two terms on the right-hand side of the same order of magnitude. 
Therefore, this equation cannot be used to find any dynamo. 

The last component on the right-hand side of (26) corresponds to  the known a-effect 
of a turbulent dynamo (Steenbeck et al. 1966; Steenbeck & Krause 1966). For the 
SSF, the a-effect is not as important as for the dynamics of LSF. The helicity of 
turbulent motion influences the magnetic-fluctuation-energy distribution in scale but 
does not lead to  the SSF generation. This assertion becomes evident when we look 
a t  (29), which lacks any helicity contribution. 

To solve the problem of the SSF generation, let us consider the non-helical 
turbulence, for which a = 0 and B = 0. Introducing a new function B = r2BLL into 
(26) we obtain an equation with a self-conjugate operator: 

We shall solve the problem for eigenvalues 

B(r, t )  = $ ( r )  exp ( - E t )  (31) 

with the aid of the variational principle. To accomplish this, we need to find a 
minimum of the functional 

~1 = TNN(O)-T'N(r). 

I n  the inertial range, where the viscosity is not important, we shall represent the 
correlation functions by 

1. (33) 
TLL = T-A,r-Y, TNN = T-ANTy,  

T , A L , A N > 0 ,  1 < y < 2 ,  ~ ~ 4 r 4 1 . J  

The correlation functions (33) have the dimensions of the diffusion coefficient ul and 
hence the exponent y is associated with the law of diminishing of the characteristic 
velocity of eddies u,, as their characteristic scale r decreases : u, r - ry, ur - r(7-l). 
In  real turbulence, the energy is concentrated at r - 1, i.e. u: - r2(Y-l) and 
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2(y- l )  > 0, whence follows a lower bound on the value of y in (33). On the other 
hand, the‘energy’offieldsVxuorV.u(i.e. thequant i t ies((V~u)~) ,  ( ( V ~ U ) ~ ) )  must 
be concentrated on a length of viscous damping lx. In this case only, there occurs 
a cascaded transfer of the energy into viscous scales and a further energy dissipation 
there. This implies uf/r  - r2(Y-2) and 2(y-2) < 0.’ From this follows an upper bound 
on the value of y in (33). 

We shall substitute the correlation functions (33) into (16) and require that the 
correlation functions of the fields V x u and V*u be positive when r+O. Then, we shall 
obtain bounds on the quantities A,  and A N :  

The equality on the upper limit (34) corresponds to an incompressible flow (V mu = 0). 
The equality on the lower limit (34) corresponds to a potential flow (V x u = 0). 

From the self-conjugate form of the right-hand side of (30) follows the reality of 
eigenvalues of En. If one of En < 0, then, according to (31), there is an exponential 
growth of the SSF, i.e. a dynamo takes place. In order to demonstrate that the 
dynamo does indeed take place (E,  < 0) ,  it is sufficient to find a trial function that 
makes the functional (32) negative. The trial function may be an arbitrary one but 
we shall seek it in such a form that the Ohmic dissipation makes a negligible 
contribution to the functional (32). Since the Ohmic dissipation acts at very small 
r ,  the trial function must tend to zero when r+O. With such a trial function, the 
Ohmic dissipation in (32) is not significant and can be neglected. Besides, it is 
convenient to use a representation of the correlation functions TLL and T” in (32) 
in terms of (33) and, therefore, the trial function must also rather rapidly diminish 
when r+ l .  

We shall choose @ in the form 

@ = (7) L B  exp( -:) (1, < L 4 I ) .  

With the aid of (33) we see that the functional (32) becomes negative when 

y - - 1 < B ( ( y - l )  2 [ 2  ++l- - .  ;I 

(35) 

Using (33) and (34) we see that the expression between the square brackets in (36) 
is positive. Therefore, the interval of positive values of/3 (that satisfy the requirement 
of smallness of @ when r - 1 )  does indeed exist. 

Note that when the Ohmic dissipation is taken into account, the functional (32) 
involves a positive term 

that is small as compared with those taken into account when R, % 1. 
Thus, the conclusion about the existence of a turbulent dynamo of the SSF at rather 

large magnetic Reynolds numbers is valid not only for an incompressible fluid and 
acoustic turbulence : it is generalized to an arbitrary compressible motion. The 
determination of a critical value of R,, which is a dynamo-instability threshold, is 
beyond the scope of this paper. 
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6. Conclusion 
As we have seen, a treatment of the magnetic-field dynamics of a highly conducting 

turbulent fluid in Lagrangian variables involves kinetic equations for fluid-particle 
joint transition probability densities. 

There are well-known kinetic equations governing Markovian processes - these are 
the KFP equations of the diffusion type. A number of authors (Bartlett 1955; Pawula 
1967 ; Rytov 1976) have arrived at  the conclusion that for processes with a probability 
consequence (non-Markovian processes), equations are valid that coincide in their 
form with KFP ones, but having different coefficients; these are generalized KFP 
equations. This question has been examined in greatest detail by Pawula (1967). The 
kinetic equations for joint probability densities of transition of fluid particles have 
been written in $3. The kinetic equations and correlation properties of their 
coefficients suggest a number of conclusions which are important for the dynamo 
theory of magnetic fields. 

In  the framework of this theory eddy diffusivity of a mean magnetic field is positive 
and coincides with that of an entropy field (a special case of scalar field defined in 
Appendix A). The coefficients in general depend on helicity in implicit form. For large 
magnetic Reynolds numbers, the dynamo effect of small-scale fields in the inertia 
range of scales takes place for an arbitrary turbulence. 

The authors are grateful to Professors A. M. Yaglom, V. I. Tatarsky and E. N. 
Parker for helpful discussions, and to Dr R. H. Kraichnan for valuable comments. 

Appendix A 
It is worthwhile to point to an association of the distribution function p n  with 

correlation properties of a scalar field that is quite useful here. Let us consider the 
quantity S(x, t )  that satisfies the equation 

as - + v i a i s  = 0. 
at 

We will call the quantity S the entropy field because, for an adiabatic flow, equation 
(A 1) is satisfied by the entropy density. For an incompressible flow, the entropy field 
possesses the same properties as does the usual scalar field O(x, t )  satisfying the 
equation 

ao 
-+a tv i e  at = 0. 

The product of n values of S ,  taken a t  n different points, obeys the equation 

n 
S:, = n S ( U X , t ) .  

a=1 

It is easy to see that the equation for a ‘non-averaged’ probability density of 
transition of fluid particles p:, coincides in structure with (A 2) : 
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(A 3) I s + v z ( " x ,  t)aa(p:, = 0, 
at 

n 
pk("x yz, t )  = n S[aZ-a('x, t ) ]  

a=1 

(Liouville theorem). It becomes apparent from equations (A 2) and (A 3) that the 
kinetic equation for p, and the equation for the n-point correlation function of the 
entropy field S = (Sa) should also coincide. Integration of (A 2) over time leads to 

h'k(t) = &(to) -s ~ ~ ( ~ x ,  t') 9, Sb(t') dt'. 

Applying the iteration procedure to this equation we can express Sb(t) through Sl,(to) : 

t 

t o  

sg(t) = es;(to) 

S n  = ( ~ b ( t ) >  = (e><Sb(to)> = (2) Sn(to), and 

where 
from (A 4) that 

(A 4) 

is an integral operator (or a differential operator of infinite order). It follows 

Sn(to)  = (@)I-' s n ( t ) ,  

where ((e))-l is a reverse operator, so that (e)((e))-l = 1. Finally we have 

%@ at = €,s,(t), ) 

Note that the operator f, does not involve time derivatives or an integral over past 
time. We have given above a simplified proof of the possible form of (A 5 )  of an 
equation for S, (and forpn). In  a more general and detailed analysis by Pawula (1967) 
the distribution function p ( t )  is expressed in terms of p ( t - A t ) ,  At+O. In  this way he 
arrived at an equation of the type (A 5 )  with no reverse operator ((E))-l. Note that 
perturbation theory deals with the expansion of operator (2) involving no reverse 
operator. This leads to an approximate equation involving a time integral (see e.g. 
Vainshtein 1972) 

& ( t - ~ ) 8 , ( ~ )  d7. (A 6) 

Appendix B 
Let us discuss the possibility that p1 is not a Gaussian function and satisfies some 

integral equation (the differential equation of infinite order). As we have seen, in this 
case the equations for all p,(n < 4) immediately become integral (see Pawula 1967, 
$3, statement 3). We can demonstrate that the use of such equations leads to 
physically meaningless results by examining an example of a statistically homogeneous 
distribution of an entropy field. 
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The equation for p ,  holds for S,, in particular, when the dependence of S, on lx 
and is in the form r = I ' x - ~ x I .  The general form of this equation is 

?! at S,(r) = Jm Y) S,(Y) dy 

a a 2  a 3  

Here a,  is a function of r .  The series in (B 1) can be obtained by Taylor expansion 
of S,(y) in the vicinity of point r .  

The dimensions of the a,  functions are: a, coincides with that of u ;  a, with ul; 
and a,  with ul(,-l). Let us clarify the behaviour of the a, functions when r -4 1. It 
is clear that  a,  - rm. The point here is that the time of change of S,, for very small 
r ,  r < Zx(lx is the smallest scale in the turbulence spectrum, defined by viscous 
damping) coincides in order of magnitude with the eddy turnover time Zx/ux (u, is the 
characteristic rate of fluctuations of a scale Z,). If the expansion of the a, functions 
into a power series of r started from powers lower than m, then a change of S, for 
r -4 Z would proceed much more rapidly. For example, if at small r u2 - r were valid, 
i.e. a, = a; r ,  then the series (B 1)  would lead to a change of S,  for the time r/u -4 lx/ux 
(because a; x u). Let us write the series (B 1 )  for small r :  

a 3  . . ) S 2 ( r )  

or in the spectral representation : 

a a a 2  
-S , (k )  = 60+61k-+62k2-+ .  . . ) S z ( k ) .  
at ( ak ak2 

Here T, x ux/lx, and the coefficients b ,  and 6,  are dimensionless constants. Equation 
(B 2) holds when r -4 I ,  while (B 3 ) ,  when Akl, % 1 ,  Ak being the characteristic scale 
of variation of S, (k )  at large k ,  kl, % 1 .  

Let us expand the nucleus K of equation ( B  1) in a somewhat different way. Taking 
into account the fact that  SZ(r)  is an even function, the nucleus K can be symmetrized: 
it must be even with respect to both the first and second arguments. Let us represent 
S,(y) in powers of y and K(r,  y), in powers of r :  

- S z ( r )  at = J(rZK2(y)+r4K4(y)+.  . .)(S!jO)+y2Sp)+y4Sf)+. . . )dy.  (B 4) 

Let us add the coefficients at rZn and, using the properties of the a,  functions in (B 1) 
at small r we have 

a 

J ~ , n ( y )  y 2 ~  dy = 0 (B 5 )  

forp > n, and all terms withp < n do not go to zero. For the Fourier-transform l?2n(k) 
of the function K,,(y) the property of (B 5 )  implies that  the expansion of l?2n in 
powers of k breaks with the component, that  is proportional to  k2n. In other words, 
K,,(y) is not a regular function. It represents the sum of a finite number of 
components that are proportional to  the &function and its derivatives up to 
second-order. This suggests that  K ( x ,  y)  represents a singular function, consisting of 
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a finite number of &functions and its derivatives, i.e. (B 1) is a differential one. As 
such, as shown by Pawula (1967), i t  cannot be higher than second-order. 
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